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Appendix
A.1 Metric Introduction
For Novel View Synthesis:
LPIPS: Learned Perceptual Image Patch Similarity
(LPIPS) [Zhang et al., 2018] measures image similarity
based on deep features extracted by a learned network, and it
better coincides with human judgment.
PSNR: Peak Signal-to-Noise Ratio (PSNR) measures image
similarity with the pixel-wise independence assumption.
SSIM: Structural Similarity Index Measure (SSIM) is a
perception-based method and measures image similarity by
considering structural information.
For Image Outpainting:
FID: Fréchet Inception Distance (FID) [Heusel et al., 2017]
is used to measure the diversity and fidelity of the generated
image.
IS: Inception Score (IS) [Salimans et al., 2016] is a common
metric to measure the fidelity of the generated image.
CLIP-SIM: CLIP Similarity Score (CLIP-SIM) [Radford et
al., 2021] is used to measure the semantic consistency be-
tween the generated image and text.

A.2 Image filtering on MSCOCO
MSCOCO-2017 [Caesar et al., 2018] contains 172 classes:
80 thing classes, 91 stuff classes, and 1 unlabeled class.
We focus on thing classes and utilize pixel-level annotations.
Specifically, we regard the regions belonging to thing classes
as the input object regions, and models are supposed to out-
paint the remaining regions. For each image, we utilize the
pixel-level annotations to construct the binary mask to indi-
cate the known objects and unknown regions, and captions
are regarded as the text prompts. Finally, we filter the train-
ing set and the validation set to get an outpainting dataset
containing 117266 training images and 4952 test images.

A.3 More Samples of Out-animation
Figure. 1 shows more samples of our proposed out-animation
task. Our method can handle a wide variety of scenes from
the open domain.
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A.4 More Samples on MSCOCO
Out-animated Samples. Figure. 2. (a) presents the out-
animated results using the processed input objects from
MSCOCO.
Outpainted Samples. Figure. 2. (b) presents the out-
painted results using the processed input objects from
MSCOCO.
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Figure 1: Illustration of our proposed out-animation task. We first outpaint the input into complete and suitable scenes based on its content
and prompts, and then generate subsequent frames with 3D effects to form the out-animated videos. Our method can handle a wide variety of
scenes from the open domain, such as people, objects, advertised goods, paintings, etc. (∗This input comes from an artwork of a young artist
Geng Jiahao, in 2022 ANOBO “A Drop of Water with One World” exhibition. The number indicates the frame number in a 3D video.)
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Input

Output

A brown horse 
with blonde 
hair standing 
in an open 
field.

A woman 
walking a 
small white 
dog down a 
street.

Rendered Output

There is a 
young girl 
playing with 
soccer balls.

Rendered Output
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TEXT: Three people 
in a boat with an 
umbrella in the 
rain.

TEXT: A kid on a 
surfboard riding 
a little wave.

TEXT: There is a 
young girl playing 
with soccer balls.

TEXT: A young 
man in a red shirt 
is throwing a 
frisbee.

TEXT: A woman 

wearing a hat & pink 
top takes a selfie in 
front of a bathroom 
mirror.

TEXT: A baby 
elephant having 
fun playing in a 
river.

TEXT: Three dogs 
on a field of 
green grass.

(a) More Samples for 3D Photography

(b) More Samples for Image Outpainting
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Figure 2: More samples. (a) Out-animation sample results from MSCOCO. The 3D cycle effect follows 3d-photo [Shih et al., 2020]. (b)
Outpainted sample results from MSCOCO. From top to bottom: text prompt, input objects, ground truth, our prediction.


